

Analog Computing: Back to the Future?

Michael Haney Program Director

Motivation

- Scaling of Si-based digital computing is coming to an end.
- Can energy-efficient <u>Analog</u> Computing be transformative?

Original "Modern" Analog Computers

Mechanical embodiments (1800's – 1960's)

US Tide Predicting Machine No. 2 "Old Brass Brains" (1910-1965)

Electronic embodiments (1940's-1970's)

X-15 simulator analog computer (1960's)

What happened?

Digital Computing took over....

50 years+ of **Moore's Law** scaling: ~2x in operations/J every 1.5 years

Example: ~1990 RAPID SAR DARPA project:

Real-time Acousto-optic Programmable Imaging and Display for SAR

In 1990: ~100W analog vs. 10kW digital → 100x more efficient!

In 2000: ~100W analog vs. ~100W digital! → Not any better!

Computing Efficiency Reaching Limits

End of "Moore's Law"

Physical limits (Gate oxide ~ 5 Si atoms thick; electron tunneling; leakage current).

Opportunity for Analog Computers?

Artificial Neural Networks

- Basis of Artificial Intelligence applied to surge in Machine Learning workloads
- Similar to the learning and inference processes of a brain

Opportunity for Analog Computers?

Analog

3 x 10¹⁴ "OPS"/W

Digital

6 x 108 FLOPS/W

Increase in Al Workloads

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

- ML: 300,000Xincrease in computesince 2012
- Moore's Law: 12X increase

Source: www.openAl.com

Does the "end of Moore's Law" provide an opportunity for ANN Analog Computing?

Electronic

 Resurgence in Analog Artificial NNs computation and memory circuit research.

Optical/Integrated Photonics

Photonic ANNs

Feed-Forward Fully-Connected 8x8 (analog)

Fully-Connected (spiking)

Analog ANN Computing – Questions to ponder:

- What are the limits in energy/operation?
- Can we efficiently exploit analog's lower precision?
 How/Where?
- What are the key technical challenges to overcome?
- How much computation can be off-loaded to more efficient analog accelerators
 - ➤ In HPCs, now at ~10GFLOPS/W? For which workloads?
 - ➤ In DCs, for Al/ML/DL— but are there also more general applications?

Acknowledgements: John Qi
Geoff Short

Thank You!

https://arpa-e.energy.gov